|
In computing, data deduplication is a specialized data compression technique for eliminating duplicate copies of repeating data. Related and somewhat synonymous terms are intelligent (data) compression and single-instance (data) storage. This technique is used to improve storage utilization and can also be applied to network data transfers to reduce the number of bytes that must be sent. In the deduplication process, unique chunks of data, or byte patterns, are identified and stored during a process of analysis. As the analysis continues, other chunks are compared to the stored copy and whenever a match occurs, the redundant chunk is replaced with a small reference that points to the stored chunk. Given that the same byte pattern may occur dozens, hundreds, or even thousands of times (the match frequency is dependent on the chunk size), the amount of data that must be stored or transferred can be greatly reduced.〔"(Understanding Data Deduplication )" Druva, 2009. Retrieved 2013-2-13〕 This type of deduplication is different from that performed by standard file-compression tools, such as LZ77 and LZ78. Whereas these tools identify short repeated substrings inside individual files, the intent of storage-based data deduplication is to inspect large volumes of data and identify large sections – such as entire files or large sections of files – that are identical, in order to store only one copy of it. This copy may be additionally compressed by single-file compression techniques. For example a typical email system might contain 100 instances of the same 1 MB (megabyte) file attachment. Each time the email platform is backed up, all 100 instances of the attachment are saved, requiring 100 MB storage space. With data deduplication, only one instance of the attachment is actually stored; the subsequent instances are referenced back to the saved copy for deduplication ratio of roughly 100 to 1. ==Benefits== * Storage-based data deduplication reduces the amount of storage needed for a given set of files. It is most effective in applications where many copies of very similar or even identical data are stored on a single disk—a surprisingly common scenario. In the case of data backups, which routinely are performed to protect against data loss, most data in a given backup remain unchanged from the previous backup. Common backup systems try to exploit this by omitting (or hard linking) files that haven't changed or storing differences between files. Neither approach captures all redundancies, however. Hard-linking does not help with large files that have only changed in small ways, such as an email database; differences only find redundancies in adjacent versions of a single file (consider a section that was deleted and later added in again, or a logo image included in many documents). * Network data deduplication is used to reduce the number of bytes that must be transferred between endpoints, which can reduce the amount of bandwidth required. See WAN optimization for more information. * Virtual servers benefit from deduplication because it allows nominally separate system files for each virtual server to be coalesced into a single storage space. At the same time, if a given server customizes a file, deduplication will not change the files on the other servers—something that alternatives like hard links or shared disks do not offer. Backing up or making duplicate copies of virtual environments is similarly improved. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「data deduplication」の詳細全文を読む スポンサード リンク
|